Publications

2016
I Cohen, Aharon, N, and Retzker, A. 11/15/2016. Continuous Dynamical Decoupling Utilizing Time-Dependent Detuning. Fortschritte Der Physik-Progress Of Physics, 65, 6-8. . Publisher's Version
Resilience to noise and to decoherence processes is an important ingredient for the implementation of quantum information processing, and quantum technologies. To this end, techniques such as pulsed and continuous dynamical decoupling have been proposed to reduce noise effects. In this paper, we suggest a new approach to implementing continuous dynamical decoupling techniques, that uses an extra control parameter; namely, the ability to shape the time dependence of the detuning. This approach reduces the complexity of the experimental setup, such that we are only left with noise originating from the frequency of the driving field, which is much more robust than the amplitude (Rabi frequency) noise. As an example, we show that our technique can be utilized for improved sensing.
L Cohen, Pilnyak, Y, Istrati, D, Retzker, A, and Eisenberg, HS . 7/15/2016. Demonstration Of A Quantum Error Correction For Enhanced Sensitivity Of Photonic Measurements. Physical Review A, 94, 1. . Publisher's Version
The sensitivity of classical and quantum sensing is impaired in a noisy environment. Thus, one of the main challenges facing sensing protocols is to reduce the noise while preserving the signal. State-of-the-art quantum sensing protocols that rely on dynamical decoupling achieve this goal under the restriction of long noise correlation times. We implement a proof-of-principle experiment of a protocol to recover sensitivity by using an error correction for photonic systems that does not have this restriction. The protocol uses a protected entangled qubit to correct a single error. Our results show a recovery of about 87% of the sensitivity, independent of the noise probability.
T Unden, Balasubramanian, P, Louzon, D, Vinkler, Y, Plenio, MB , Markham, M, Twitchen, D, Stacey, A, Lovchinsky, I, Sushkov, AO , Lukin, MD , Retzker, A, Naydenov, B, McGuinness, LP , and Jelezko, F. 6/9/2016. Quantum Metrology Enhanced By Repetitive Quantum Error Correction. Physical Review Letters, 116, 23. . Publisher's Version
We experimentally demonstrate the protection of a room-temperature hybrid spin register against environmental decoherence by performing repeated quantum error correction whilst maintaining sensitivity to signal fields. We use a long-lived nuclear spin to correct multiple phase errors on a sensitive electron spin in diamond and realize magnetic field sensing beyond the time scales set by natural decoherence. The universal extension of sensing time, robust to noise at any frequency, demonstrates the definitive advantage entangled multiqubit systems provide for quantum sensing and offers an important complement to quantum control techniques.
S Weidt, Randall, J, Webster, SC , Lake, K, Webb, AE , Cohen, I, Navickas, T, Lekitsch, B, Retzker, A, and Hensinger, WK . 6/5/2016. Entangling Gate With Trapped Ions Using Long. 2016 Conference On Lasers And Electro-Optics (Cleo). . Publisher's Version
The use of long-wavelength radiation for gate operations is a promising approach for trapped-ion quantum computation. We demonstrate the key principle of this approach by generating a maximally entangled two-qubit Bell-state with fidelity of 0.985.
T Gefen, Herrera-Marti, DA , and Retzker, A. 3/28/2016. Parameter Estimation With Efficient Photodetectors. Physical Review A, 93, 3. . Publisher's Version
Current parameter estimation techniques rely on photodetectors which have a low efficiency and thus are based on gathering averaged statistics. Recently it was claimed that perfect photodetction will change the nature of sensing algorithms and will increase the sensing efficiency beyond the immediate effect of a higher collection efficiency. In this paper we bring up the observation that perfect photodetection implies Heisenberg scaling (1T) for parameter estimations. We analyze a specific example in detail.
I Cohen, Rotem, A, and Retzker, A. 3/28/2016. Refocusing Two-Qubit-Gate Noise For Trapped Ions By Composite Pulses. Physical Review A, 93, 3. . Publisher's Version
Amplitude noise, which inflicts a random two-qubit term, is one of the main obstacles preventing the implementation of a high-fidelity two-body gate below the fault-tolerance threshold. This noise is difficult to refocus as any refocusing technique could only tackle noise with frequency below the operation rate. Since the two-qubit-gate speed is normally the slowest rate in the system, it constitutes the last bottleneck toward an implementation of a gate below the fault-tolerant threshold. Here we propose to use composite pulses as a dynamical decoupling approach in order to reduce two-qubit-gate noise for trapped-ion systems. This is done by refocusing the building blocks of ultrafast entangling gates, where the amplitude noise is reduced to shot-to-shot noise. We present detailed simulations showing that the fault-tolerance threshold could be achieved using the proposed approach.
Q Chen, Schwarz, I, Jelezko, F, Retzker, A, and Plenio, MB . 2/24/2016. Resonance-Inclined Optical Nuclear Spin Polarization Of Liquids In Diamond Structures. Physical Review B, 93, 6. . Publisher's Version
Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners
R Nigmatullin, del Campo, A, De Chiara, G, Morigi, G, Plenio, MB , and Retzker, A. 1/25/2016. Formation Of Helical Ion Chains. Physical Review B, 93, 1. . Publisher's Version
We study the nonequilibrium dynamics of the linear-to-zigzag structural phase transition exhibited by an ion chain confined in a trap with periodic boundary conditions. The transition is driven by reducing the transverse confinement at a finite quench rate, which can be accurately controlled. This results in the formation of zigzag domains oriented along different transverse planes. The twists between different domains can be stabilized by the topology of the trap, and under laser cooling the system has a chance to relax to a helical chain with nonzero winding number. Molecular dynamics simulations are used to obtain a large sample of possible trajectories for different quench rates. The scaling of the average winding number with different quench rates is compared to the prediction of the Kibble-Zurek theory, and a good quantitative agreement is found.
J Scheuer, Schwartz, I, Chen, Q, Schulze-Sunninghausen, D, Carl, P, Hofer, P, Retzker, A, Sumiya, H, Isoya, J, Luy, B, Plenio, MB , Naydenov, B, and Jelezko, F. 1/18/2016. Optically Induced Dynamic Nuclear Spin Polarisation In Diamond. New Journal Of Physics, 18. . Publisher's Version
The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.
I Baumgart, Cai, JM , Retzker, A, Plenio, MB , and Wunderlich, C. 2016. Ultrasensitive Magnetometer Using A Single Atom. Physical Review Letters, 116, 24.
2015
Q Chen, Schwarz, I, Jelezko, F, Retzker, A, and Plenio, MB . 11/18/2015. Optical Hyperpolarization Of C-13 Nuclear Spins In Nanodiamond Ensembles. Physical Review B, 92, 18. . Publisher's Version
Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.
DA Herrera-Marti, Gefen, T, Aharonov, D, Katz, N, and Retzker, A. 11/9/2015. Quantum Error-Correction-Enhanced Magnetometer Overcoming The Limit Imposed By Relaxation. Physical Review Letters, 115, 20. . Publisher's Version
When incorporated in quantum sensing protocols, quantum error correction can be used to correct for high frequency noise, as the correction procedure does not depend on the actual shape of the noise spectrum. As such, it provides a powerful way to complement usual refocusing techniques. Relaxation imposes a fundamental limit on the sensitivity of state of the art quantum sensors which cannot be overcome by dynamical decoupling. The only way to overcome this is to utilize quantum error correcting codes. We present a superconducting magnetometry design that incorporates approximate quantum error correction, in which the signal is generated by a two qubit Hamiltonian term. This two-qubit term is provided by the dynamics of a tunable coupler between two transmon qubits. For fast enough correction, it is possible to lengthen the coherence time of the device beyond the relaxation limit.
JM Cai, Cohen, I, Retzker, A, and Plenio, MB . 10/16/2015. Proposal For High-Fidelity Quantum Simulation Using A Hybrid Dressed State. Physical Review Letters, 115, 16. . Publisher's Version
A fundamental goal of quantum technologies concerns the exploitation of quantum coherent dynamics for the realization of novel quantum applications such as quantum computing, quantum simulation, and quantum metrology. A key challenge on the way towards these goals remains the protection of quantum coherent dynamics from environmental noise. Here, we propose a concept of a hybrid dressed state from a pair of continuously driven systems. It allows sufficiently strong driving fields to suppress the effect of environmental noise while at the same time being insusceptible to both the amplitude and phase noise in the continuous driving fields. This combination of robust features significantly enhances coherence times under realistic conditions and at the same time provides new flexibility in Hamiltonian engineering that otherwise is not achievable. We demonstrate theoretically applications of our scheme for a noise-resistant analog quantum simulation in the well-studied physical systems of nitrogen-vacancy centers in diamond and of trapped ions. The scheme may also be exploited for quantum computation and quantum metrology.
I Cohen, Richerme, P, Gong, ZX , Monroe, C, and Retzker, A. 7/30/2015. Simulating The Haldane Phase In Trapped-Ion Spins Using Optical Fields. Physical Review A, 92, 1. . Publisher's Version
We propose to experimentally explore the Haldane phase in spin-one XXZ antiferromagnetic chains using trapped ions. We show how to adiabatically prepare the ground states of the Haldane phase, demonstrate their robustness against sources of experimental noise, and propose ways to detect the Haldane ground states based on their excitation gap and exponentially decaying correlations, nonvanishing nonlocal string order, and doubly degenerate entanglement spectrum.
C Senko, Richerme, P, Smith, J, Lee, A, Cohen, I, Retzker, A, and Monroe, C. 6/17/2015. Realization Of A Quantum Integer-Spin Chain With Controllable Interactions. Physical Review X, 5, 2. . Publisher's Version
The physics of interacting integer-spin chains has been a topic of intense theoretical interest, particularly in the context of symmetry-protected topological phases. However, there has not been a controllable model system to study this physics experimentally. We demonstrate how spin-dependent forces on trapped ions can be used to engineer an effective system of interacting spin-1 particles. Our system evolves coherently under an applied spin-1 XY Hamiltonian with tunable, long-range couplings, and all three quantum levels at each site participate in the dynamics. We observe the time evolution of the system and verify its coherence by entangling a pair of effective three-level particles (“qutrits”) with 86% fidelity. By adiabatically ramping a global field, we produce ground states of the XY model, and we demonstrate an instance where the ground state cannot be created without breaking the same symmetries that protect the topological Haldane phase. This experimental platform enables future studies of symmetry-protected order in spin-1 systems and their use in quantum applications.
G Mikelsons, Cohen, I, Retzker, A, and Plenio, MB . 5/22/2015. Universal Set Of Gates For Microwave Dressed-State Quantum Computing. New Journal Of Physics, 17. . Publisher's Version
We propose a set of techniques that enable universal quantum computing to be carried out using dressed states. This applies in particular to the effort of realizing quantum computation in trapped ions using long-wavelength radiation, where coupling enhancement is achieved by means of static magnetic-field gradient. We show how the presence of dressing fields enables the construction of robust single and multi-qubit gates despite the unavoidable presence of magnetic noise, an approach that can be generalized to provide shielding in any analogous quantum system that relies on the coupling of electronic degrees of freedom via bosonic modes.
JE Avron, Kenneth, O, Retzker, A, and Shalyt, M. 4/8/2015. Lindbladians For Controlled Stochastic Hamiltonians. New Journal Of Physics, 17. . Publisher's Version
We construct Lindbladians associated with controlled stochastic Hamiltonians in the weak coupling regime. This construction allows us to determine the power spectrum of the noise from measurements of dephasing rates. Moreover, by studying the derived equation it is possible to optimize the control as well as to test numerical algorithms that solve controlled stochastic Schrödinger equations. A few examples are worked out in detail.
I Cohen, Weidt, S, Hensinger, WK , and Retzker, A. 4/8/2015. Multi-Qubit Gate With Trapped Ions For Microwave And Laser-Based Implementation. New Journal Of Physics, 17. . Publisher's Version
A proposal for a phase gate and a Mølmer–Sørensen gate in the dressed state basis is presented. In order to perform the multi-qubit interaction, a strong magnetic field gradient is required to couple the phonon-bus to the qubit states. The gate is performed using resonant microwave driving fields together with either a radio-frequency (RF) driving field, or additional detuned microwave driving fields. The gate is robust to ambient magnetic field fluctuations due to an applied resonant microwave driving field. Furthermore, the gate is robust to fluctuations in the microwave Rabi frequency and is decoupled from phonon dephasing due to a resonant RF or a detuned microwave driving field. This makes this new gate an attractive candidate for the implementation of high-fidelity microwave based multi-qubit gates. The proposal can also be realized in laser-based set-ups.
HL Partner, Nigmatullin, R, Burgermeister, T, Keller, J, Pyka, K, Plenio, MB , Retzker, A, Zurek, WH , del Campog, A, and Mehlstaubler, TE . 3/1/2015. Structural Phase Transitions And Topological Defects In Ion Coulomb Crystals. Physica B-Condensed Matter, 460, Pp. 114-118. . Publisher's Version
We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble–Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.
2014
A Albrecht, Retzker, A, and Plenio, MB . 9/22/2014. Testing Quantum Gravity By Nanodiamond Interferometry With Nitrogen-Vacancy Centers. Physical Review A, 90, 3. . Publisher's Version
Interferometry with massive particles may have the potential to explore the limitations of standard quantum mechanics, in particular where it concerns its boundary with general relativity and the yet to be developed theory of quantum gravity. This development is hindered considerably by the lack of experimental evidence and testable predictions. Analyzing effects that appear to be common to many of such theories, such as a modification of the energy dispersion and of the canonical commutation relation within the standard framework of quantum mechanics, has been proposed as a possible way forward. Here we analyze in some detail the impact of a modified energy-momentum dispersion in a Ramsey-Bordé setup and provide achievable bounds of these correcting terms when operating such an interferometer with nanodiamonds. Thus, taking thermal and gravitational disturbances into account will show that without specific prerequisites, quantum gravity modifications may in general be suppressed requiring a revision of previously estimated bounds. As a possible solution we propose a stable setup which is rather insensitive to these effects. Finally, we address the problems of decoherence and pulse errors in such setups and discuss the scalings and advantages with increasing particle mass.