Long-lived driven solid-state quantum memory

Citation:

JM Cai, F Jelezko, N Katz, A Retzker, and MB Plenio. 9/17/2012. “Long-lived driven solid-state quantum memory.” New Journal of Physics, 14. Publisher's Version

Abstract:

We investigate the performance of inhomogeneously broadened spin ensembles as quantum memories under continuous dynamical decoupling. The role of the continuous driving field is twofold: firstly, it decouples individual spins from magnetic noise; secondly, and more importantly, it suppresses and reshapes the spectral inhomogeneity of spin ensembles. We show that a continuous driving field, which itself may also be inhomogeneous over the ensemble, can considerably enhance the decay of the tails of the inhomogeneous broadening distribution. This fact enables a spin-ensemble-based quantum memory to exploit the effect of cavity protection and achieve a much longer storage time. In particular, for a spin ensemble with a Lorentzian spectral distribution, our calculations demonstrate that continuous dynamical decoupling has the potential to improve its storage time by orders of magnitude for the state-of-the-art experimental parameters.
See also: 2012
Last updated on 07/04/2021